Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neuroinflammation ; 19(1): 93, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413853

RESUMO

BACKGROUND: Friedreich's ataxia is a rare hereditary neurodegenerative disease caused by decreased levels of the mitochondrial protein frataxin. Similar to other neurodegenerative pathologies, previous studies suggested that astrocytes might contribute to the progression of the disease. To fully understand the mechanisms underlying neurodegeneration in Friedreich's ataxia, we investigated the reactivity status and functioning of cultured human astrocytes after frataxin depletion using an RNA interference-based approach and tested the effect of pharmacologically modulating the SHH pathway as a novel neuroprotective strategy. RESULTS: We observed loss of cell viability, mitochondrial alterations, increased autophagy and lipid accumulation in cultured astrocytes upon frataxin depletion. Besides, frataxin-deficient cells show higher expression of several A1-reactivity markers and release of pro-inflammatory cytokines. Interestingly, most of these defects were prevented by chronically treating the cells with the smoothened agonist SAG. Furthermore, in vitro culture of neurons with conditioned medium from frataxin-deficient astrocytes results in a reduction of neuronal survival, neurite length and synapse formation. However, when frataxin-deficient astrocytes were chronically treated with SAG, we did not observe these alterations in neurons. CONCLUSIONS: Our results demonstrate that the pharmacological activation of the SHH pathway could be used as a target to modulate astrocyte reactivity and neuron-glia interactions to prevent neurodegeneration in Friedreich's ataxia.


Assuntos
Ataxia de Friedreich , Doenças Neurodegenerativas , Síndromes Neurotóxicas , Astrócitos/metabolismo , Ataxia de Friedreich/tratamento farmacológico , Ataxia de Friedreich/genética , Ataxia de Friedreich/patologia , Humanos , Proteínas de Ligação ao Ferro , Mitocôndrias , Doenças Neurodegenerativas/metabolismo , Síndromes Neurotóxicas/metabolismo , Frataxina
2.
Front Mol Neurosci ; 14: 732120, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512261

RESUMO

Ketone bodies are metabolites that replace glucose as the main fuel of the brain in situations of glucose scarcity, including prolonged fasting, extenuating exercise, or pathological conditions such as diabetes. Beyond their role as an alternative fuel for the brain, the impact of ketone bodies on neuronal physiology has been highlighted by the use of the so-called "ketogenic diets," which were proposed about a century ago to treat infantile seizures. These diets mimic fasting by reducing drastically the intake of carbohydrates and proteins and replacing them with fat, thus promoting ketogenesis. The fact that ketogenic diets have such a profound effect on epileptic seizures points to complex biological effects of ketone bodies in addition to their role as a source of ATP. In this review, we specifically focus on the ability of ketone bodies to regulate neuronal excitability and their effects on gene expression to respond to oxidative stress. Finally, we also discuss their capacity as signaling molecules in brain cells.

3.
Glia ; 69(3): 619-637, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33010069

RESUMO

Fast synaptic transmission in vertebrates is critically dependent on myelin for insulation and metabolic support. Myelin is produced by oligodendrocytes (OLs) that maintain multilayered membrane compartments that wrap around axonal fibers. Alterations in myelination can therefore lead to severe pathologies such as multiple sclerosis. Given that hypomyelination disorders have complex etiologies, reproducing clinical symptoms of myelin diseases from a neurological perspective in animal models has been difficult. We recently reported that R-Ras1-/- and/or R-Ras2-/- mice, which lack GTPases essential for OL survival and differentiation processes, present different degrees of hypomyelination in the central nervous system with a compounded hypomyelination in double knockout (DKO) mice. Here, we discovered that the loss of R-Ras1 and/or R-Ras2 function is associated with aberrant myelinated axons with increased numbers of mitochondria, and a disrupted mitochondrial respiration that leads to increased reactive oxygen species levels. Consequently, aberrant myelinated axons are thinner with cytoskeletal phosphorylation patterns typical of axonal degeneration processes, characteristic of myelin diseases. Although we observed different levels of hypomyelination in a single mutant mouse, the combined loss of function in DKO mice lead to a compromised axonal integrity, triggering the loss of visual function. Our findings demonstrate that the loss of R-Ras function reproduces several characteristics of hypomyelinating diseases, and we therefore propose that R-Ras1-/- and R-Ras2-/- neurological models are valuable approaches for the study of these myelin pathologies.


Assuntos
Axônios , Bainha de Mielina , Animais , Diferenciação Celular , Sistema Nervoso Central , Camundongos , Oligodendroglia
4.
Mol Cell Neurosci ; 101: 103415, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31676432

RESUMO

Energy supply to the brain is essential to ensure correct neuronal function, and glucose is the main fuel utilized by neurons. In metabolically challenging situations when glucose availability is restricted, brain cells may switch to alternative carbon substrates. This ensures energy supply to preserve the functions of the central nervous system. In this regard, ketone bodies, a by-product of fat metabolism, play a key role. They can replace glucose as the main source of ATP in the brain when glucose availability is very low, such as during fasting, extenuating exercise, or pathological situations such as diabetes. However, the mechanisms through which brain cells reprogram their metabolism are not fully understood. Fibroblast growth factor-21 (FGF21) is an endocrine hormone that contributes to modulate systemic adaptation to fasting, and it is known to regulate ketone body metabolism in peripheral tissues. However, its role in the brain, except for neuroendocrine regions, has not been studied in depth. In this work, we have used a combination of cell biology, biochemistry and extracellular flux analysis to examine the role of FGF21 in neuronal metabolism. We show that FGF21 increases the ability of neurons to utilize ketone bodies in cortical neurons as illustrated by a larger mitochondrial respiratory capacity in the presence of ketone bodies. Finally, we observe that the effect of FGF21 is mediated through a mechanism partly dependent on AMP-dependent kinase (AMPK). We propose that this mechanism could contribute to prepare the brain for fasting, thus preventing metabolic decline.


Assuntos
Fatores de Crescimento de Fibroblastos/farmacologia , Corpos Cetônicos/metabolismo , Neurônios/metabolismo , Proteínas Quinases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Animais , Córtex Cerebral/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Neurônios/efeitos dos fármacos
5.
Diabetes ; 68(4): 709-723, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30755400

RESUMO

Thioredoxin-interacting protein (TXNIP) is an α-arrestin that can bind to and inhibit the antioxidant protein thioredoxin (TXN). TXNIP expression is induced by glucose and promotes ß-cell apoptosis in the pancreas, and deletion of its gene in mouse models protects against diabetes. TXNIP is currently studied as a potential new target for antidiabetic drug therapy. In this study, we describe a family with a mutation in the TXNIP gene leading to nondetectable expression of TXNIP protein. Symptoms of affected family members include lactic acidosis and low serum methionine levels. Using patient-derived TXNIP-deficient fibroblasts and myoblasts, we show that oxidative phosphorylation is impaired in these cells when given glucose and pyruvate but normalized with malate. Isolated mitochondria from these cells appear to have normal respiratory function. The cells also display a transcriptional pattern suggestive of a high basal activation of the Nrf2 transcription factor. We conclude that a complete lack of TXNIP in human is nonlethal and leads to specific metabolic distortions that are, at least in part, linked to a deficient respiration on pyruvate. The results give important insights into the impact of TXNIP in humans and thus help to further advance the development of antidiabetic drugs targeting this protein.


Assuntos
Acidose Láctica/genética , Proteínas de Transporte/genética , Metionina/sangue , Mutação , Ácido Pirúvico/metabolismo , Acidose Láctica/metabolismo , Proteínas de Transporte/metabolismo , Criança , Pré-Escolar , Feminino , Fibroblastos/metabolismo , Glicólise/fisiologia , Humanos , Masculino , Mitocôndrias/metabolismo
6.
J Neurosci ; 38(2): 452-464, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29175959

RESUMO

Immune-related events in the periphery can remotely affect brain function, contributing to neurodegenerative processes and cognitive decline. In mice, peripheral surgery induces a systemic inflammatory response associated with changes in hippocampal synaptic plasticity and transient cognitive decline, however, the underlying mechanisms remain unknown. Here we investigated the effect of peripheral surgery on neuronal-glial function within hippocampal neuronal circuits of relevance to cognitive processing in male mice at 6, 24, and 72 h postsurgery. At 6 h we detect the proinflammatory cytokine IL-6 in the hippocampus, followed up by alterations in the mRNA and protein expression of astrocytic and neuronal proteins necessary for optimal energy supply to the brain and for the reuptake and recycling of glutamate in the synapse. Similarly, at 24 h postsurgery the mRNA expression of structural proteins (GFAP and AQP4) was compromised. At this time point, functional analysis in astrocytes revealed a decrease in resting calcium signaling. Examination of neuronal activity by whole-cell patch-clamp shows elevated levels of glutamatergic transmission and changes in AMPA receptor subunit composition at 72 h postsurgery. Finally, lactate, an essential energy substrate produced by astrocytes and critical for memory formation, decreases at 6 and 72 h after surgery. Based on temporal parallels with our previous studies, we propose that the previously reported cognitive decline observed at 72 h postsurgery in mice might be the consequence of temporal hippocampal metabolic, structural, and functional changes in astrocytes that lead to a disruption of the neuroglial metabolic coupling and consequently to a neuronal dysfunction.SIGNIFICANCE STATEMENT A growing body of evidence suggests that surgical trauma launches a systemic inflammatory response that reaches the brain and associates with immune activation and cognitive decline. Understanding the mechanisms by which immune-related events in the periphery can influence brain processes is essential for the development of therapies to prevent or treat postoperative cognitive dysfunction and other forms of cognitive decline related to immune-to-brain communication, such as Alzheimer's and Parkinson's diseases. Here we describe the temporal orchestration of a series of metabolic, structural, and functional changes after aseptic trauma in mice related to astrocytes and later in neurons that emphasize the role of astrocytes as key intermediaries between peripheral immune events, neuronal processing, and potentially cognition.


Assuntos
Hipocampo/metabolismo , Neuroglia/metabolismo , Neuroimunomodulação/fisiologia , Neurônios/metabolismo , Osteotomia/efeitos adversos , Animais , Citocinas/biossíntese , Hipocampo/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
7.
Mol Cell Biol ; 37(24)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-28993478

RESUMO

TP53 is one of the most commonly mutated genes in human cancers. Unlike other tumor suppressors that are frequently deleted or acquire loss-of-function mutations, the majority of TP53 mutations in tumors are missense substitutions, which lead to the expression of full-length mutant proteins that accumulate in cancer cells and may confer unique gain-of-function (GOF) activities to promote tumorigenic events. Recently, mutant p53 proteins have been shown to mediate metabolic changes as a novel GOF to promote tumor development. There is a strong rationale that the GOF activities, including alterations in cellular metabolism, might vary between the different p53 mutants. Accordingly, the effect of different mutant p53 proteins on cancer cell metabolism is largely unknown. In this study, we have metabolically profiled several individual frequently occurring p53 mutants in cancers, focusing on glycolytic and mitochondrial oxidative phosphorylation pathways. Our investigation highlights the diversity of different p53 mutants in terms of their effect on metabolism, which might provide a foundation for the development of more effective targeted pharmacological approaches toward variants of mutant p53.


Assuntos
Mitocôndrias/genética , Mitocôndrias/metabolismo , Mutação de Sentido Incorreto , Neoplasias/genética , Neoplasias/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Glicólise/genética , Células HCT116 , Humanos , Fosforilação Oxidativa
8.
Exp Cell Res ; 360(1): 41-46, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28263755

RESUMO

Neuronal excitability is a highly demanding process that requires high amounts of energy and needs to be exquisitely regulated. For this reason, brain cells display active energy metabolism to support their activity. Independently of their roles as energy substrates, compelling evidence shows that the nature of the fuels that neurons use contribute to fine-tune neuronal excitability. Crosstalk of neurons with glial populations also plays a prominent role in shaping metabolic flow in the brain. In this review, we provide an overview on how different carbon substrates and metabolic pathways impact neurotransmission, and the potential implications for neurological disorders in which neuronal excitability is deregulated, such as epilepsy.


Assuntos
Metabolismo Energético , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , Transmissão Sináptica/fisiologia , Animais , Humanos , Doenças do Sistema Nervoso/patologia , Neurônios/patologia
9.
Sci Rep ; 6: 28080, 2016 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-27346647

RESUMO

Recently thioredoxin reductase 1 (TrxR1), encoded by Txnrd1, was suggested to modulate glucose and lipid metabolism in mice. Here we discovered that TrxR1 suppresses insulin responsiveness, anabolic metabolism and adipocyte differentiation. Immortalized mouse embryonic fibroblasts (MEFs) lacking Txnrd1 (Txnrd1(-/-)) displayed increased metabolic flux, glycogen storage, lipogenesis and adipogenesis. This phenotype coincided with upregulated PPARγ expression, promotion of mitotic clonal expansion and downregulation of p27 and p53. Enhanced Akt activation also contributed to augmented adipogenesis and insulin sensitivity. Knockdown of TXNRD1 transcripts accelerated adipocyte differentiation also in human primary preadipocytes. Furthermore, TXNRD1 transcript levels in subcutaneous adipose tissue from 56 women were inversely associated with insulin sensitivity in vivo and lipogenesis in their isolated adipocytes. These results suggest that TrxR1 suppresses anabolic metabolism and adipogenesis by inhibition of intracellular signaling pathways downstream of insulin stimulation.


Assuntos
Adipócitos/enzimologia , Adipogenia , Diferenciação Celular , Resistência à Insulina , Tiorredoxina Redutase 1/metabolismo , Animais , Linhagem Celular Transformada , Feminino , Humanos , Camundongos , Camundongos Knockout , Tiorredoxina Redutase 1/genética
10.
J Biol Chem ; 291(29): 15169-84, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27231350

RESUMO

Endurance and resistance exercise training induces specific and profound changes in the skeletal muscle transcriptome. Peroxisome proliferator-activated receptor γ coactivator-1 α (PGC-1α) coactivators are not only among the genes differentially induced by distinct training methods, but they also participate in the ensuing signaling cascades that allow skeletal muscle to adapt to each type of exercise. Although endurance training preferentially induces PGC-1α1 expression, resistance exercise activates the expression of PGC-1α2, -α3, and -α4. These three alternative PGC-1α isoforms lack the arginine/serine-rich (RS) and RNA recognition motifs characteristic of PGC-1α1. Discrete functions for PGC-1α1 and -α4 have been described, but the biological role of PGC-1α2 and -α3 remains elusive. Here we show that different PGC-1α variants can affect target gene splicing through diverse mechanisms, including alternative promoter usage. By analyzing the exon structure of the target transcripts for each PGC-1α isoform, we were able to identify a large number of previously unknown PGC-1α2 and -α3 target genes and pathways in skeletal muscle. In particular, PGC-1α2 seems to mediate a decrease in the levels of cholesterol synthesis genes. Our results suggest that the conservation of the N-terminal activation and repression domains (and not the RS/RNA recognition motif) is what determines the gene programs and splicing options modulated by each PGC-1α isoform. By using skeletal muscle-specific transgenic mice for PGC-1α1 and -α4, we could validate, in vivo, splicing events observed in in vitro studies. These results show that alternative PGC-1α variants can affect target gene expression both quantitatively and qualitatively and identify novel biological pathways under the control of this system of coactivators.


Assuntos
Processamento Alternativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Animais , Células Cultivadas , Sequência Conservada , Éxons , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/química , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estabilidade Proteica , Receptores de Esteroides/química , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
11.
Trends Endocrinol Metab ; 26(4): 165-75, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25748272

RESUMO

Cells have evolved a highly integrated network of mechanisms to coordinate cellular survival/death, proliferation, differentiation, and repair with metabolic states. It is therefore not surprising that proteins with canonical roles in cell death/survival also modulate nutrient and energy metabolism and vice versa. The finding that many BCL-2 (B cell lymphoma 2) proteins reside at mitochondria or can translocate to this organelle has long motivated investigation into their involvement in normal mitochondrial physiology and metabolism. These endeavors have led to the discovery of homeostatic roles for BCL-2 proteins beyond apoptosis. We predominantly focus on recent findings that link select BCL-2 proteins to carbon substrate utilization at the level of mitochondrial fuel choice, electron transport, and metabolite import independent of their cell death regulatory function.


Assuntos
Metabolismo Energético , Homeostase , Mitocôndrias/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Dieta/efeitos adversos , Ingestão de Energia , Humanos , Mitocôndrias/enzimologia , Fosforilação Oxidativa , Transporte Proteico
12.
Methods Mol Biol ; 1241: 59-69, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25308488

RESUMO

The introduction of microplate-based assays that measure extracellular fluxes in intact, living cells has revolutionized the field of cellular bioenergetics. Here, we describe a method for real time assessment of mitochondrial oxygen consumption rates in primary mouse cortical neurons and astrocytes. This method requires the Extracellular Flux Analyzer Instrument (XF24, Seahorse Biosciences), which uses fluorescent oxygen sensors in a microplate assay format.


Assuntos
Astrócitos/citologia , Microtecnologia/métodos , Mitocôndrias/metabolismo , Neurônios/citologia , Consumo de Oxigênio , Animais , Astrócitos/metabolismo , Respiração Celular , Córtex Cerebral/citologia , Espaço Extracelular/metabolismo , Camundongos , Neurônios/metabolismo
13.
Cell Metab ; 19(2): 272-84, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24506868

RESUMO

The homeostatic balance of hepatic glucose utilization, storage, and production is exquisitely controlled by hormonal signals and hepatic carbon metabolism during fed and fasted states. How the liver senses extracellular glucose to cue glucose utilization versus production is not fully understood. We show that the physiologic balance of hepatic glycolysis and gluconeogenesis is regulated by Bcl-2-associated agonist of cell death (BAD), a protein with roles in apoptosis and metabolism. BAD deficiency reprograms hepatic substrate and energy metabolism toward diminished glycolysis, excess fatty acid oxidation, and exaggerated glucose production that escapes suppression by insulin. Genetic and biochemical evidence suggests that BAD's suppression of gluconeogenesis is actuated by phosphorylation of its BCL-2 homology (BH)-3 domain and subsequent activation of glucokinase. The physiologic relevance of these findings is evident from the ability of a BAD phosphomimic variant to counteract unrestrained gluconeogenesis and improve glycemia in leptin-resistant and high-fat diet models of diabetes and insulin resistance.


Assuntos
Metabolismo Energético/fisiologia , Gluconeogênese/fisiologia , Fígado/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Animais , Metabolismo Energético/genética , Gluconeogênese/genética , Camundongos , Camundongos Mutantes , Fosforilação , Proteína de Morte Celular Associada a bcl/genética
14.
Trends Cell Biol ; 24(2): 118-27, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24018218

RESUMO

Cells are capable of metabolizing a variety of carbon substrates, including glucose, fatty acids, ketone bodies, and amino acids. Cellular fuel choice not only fulfills specific biosynthetic needs, but also enables programmatic adaptations to stress conditions beyond compensating for changes in nutrient availability. Emerging evidence indicates that specific switches from utilization of one substrate to another can have protective or permissive roles in disease pathogenesis. Understanding the molecular determinants of cellular fuel preference may provide insights into the homeostatic control of stress responses, and unveil therapeutic targets. Here, we highlight overarching themes encompassing cellular fuel choice; its link to cell fate and function; its advantages in stress protection; and its contribution to metabolic dependencies and maladaptations in pathological conditions.


Assuntos
Células/metabolismo , Metabolismo Energético , Diferenciação Celular , Células/patologia , Humanos
15.
Neurosci Lett ; 531(2): 182-7, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23123787

RESUMO

Mitochondrial dysfunction is a common feature of many neurodegenerative disorders. Likewise, activation of glycogen synthase kinase-3 (GSK-3) has been proposed to play an important role in neurodegeneration. This multifunctional protein kinase is involved in a number of cellular functions and we previously showed that chronic inhibition of GSK-3 protects neuronal cells against mitochondrial dysfunction-elicited cell death, through a mechanism involving increased glucose metabolism and the translocation of hexokinase II (HKII) to mitochondria. Here, we sought to gain deeper insight into the molecular basis of this neuroprotection. We found that chronic inhibition of GSK-3, either genetically or pharmacologically, elicited a marked increase in brain-derived neurotrophic factor (BDNF) secretion, which in turn conferred resistance to mitochondrial dysfunction through subcellular re-distribution of HKII. These results define a molecular pathway through which chronic inhibition of GSK-3 may protect neuronal cells from death. Moreover, they highlight the potential benefits of enhanced neurotrophic factor secretion as a therapeutic approach to treat neurodegenerative diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hexoquinase/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Morte Celular/fisiologia , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Mitocôndrias/metabolismo , Rotenona/toxicidade , Desacopladores/toxicidade
16.
PLoS Genet ; 8(8): e1002902, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22927828

RESUMO

Obesity-associated metabolic complications are generally considered to emerge from abnormalities in carbohydrate and lipid metabolism, whereas the status of protein metabolism is not well studied. Here, we performed comparative polysome and associated transcriptional profiling analyses to study the dynamics and functional implications of endoplasmic reticulum (ER)-associated protein synthesis in the mouse liver under conditions of obesity and nutrient deprivation. We discovered that ER from livers of obese mice exhibits a general reduction in protein synthesis, and comprehensive analysis of polysome-bound transcripts revealed extensive down-regulation of protein synthesis machinery, mitochondrial components, and bile acid metabolism in the obese translatome. Nutrient availability also plays an important but distinct role in remodeling the hepatic ER translatome in lean and obese mice. Fasting in obese mice partially reversed the overall translatomic differences between lean and obese nonfasted controls, whereas fasting of the lean mice mimicked many of the translatomic changes induced by the development of obesity. The strongest examples of such regulations were the reduction in Cyp7b1 and Slco1a1, molecules involved in bile acid metabolism. Exogenous expression of either gene significantly lowered plasma glucose levels, improved hepatic steatosis, but also caused cholestasis, indicating the fine balance bile acids play in regulating metabolism and health. Together, our work defines dynamic regulation of the liver translatome by obesity and nutrient availability, and it identifies a novel role for bile acid metabolism in the pathogenesis of metabolic abnormalities associated with obesity.


Assuntos
Retículo Endoplasmático/metabolismo , Fígado/metabolismo , Obesidade/metabolismo , Polirribossomos/metabolismo , Biossíntese de Proteínas , Animais , Ácidos e Sais Biliares/metabolismo , Colestase/metabolismo , Família 7 do Citocromo P450 , Jejum/metabolismo , Fígado Gorduroso/metabolismo , Glucose/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Obesos , Obesidade/genética , Organismos Livres de Patógenos Específicos , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo
17.
Neuron ; 74(4): 719-30, 2012 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-22632729

RESUMO

Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phosphoregulation of BAD and are independent of its apoptotic function. BAD modifications that reduce glucose metabolism produce a marked increase in the activity of metabolically sensitive K(ATP) channels in neurons, as well as resistance to behavioral and electrographic seizures in vivo. Seizure resistance is reversed by genetic ablation of the K(ATP) channel, implicating the BAD-K(ATP) axis in metabolic control of neuronal excitation and seizure responses.


Assuntos
Metabolismo Energético/fisiologia , Hipocampo/metabolismo , Canais KATP/metabolismo , Convulsões/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Animais , Apoptose/fisiologia , Astrócitos/metabolismo , Células Cultivadas , Eletroencefalografia , Hipocampo/fisiopatologia , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Consumo de Oxigênio/fisiologia , Fosforilação , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Proteína de Morte Celular Associada a bcl/genética
18.
Mol Cell ; 40(5): 687-8, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21145478

RESUMO

The BCL-2 family member Noxa induces apoptosis by antagonizing the prosurvival protein MCL-1. In this issue of Molecular Cell, Lowman et al. (2010) uncover a glucose-dependent phosphoregulatory mechanism that inactivates Noxa's apoptotic function and triggers its capacity to modulate glucose metabolism.

19.
Adv Exp Med Biol ; 687: 1-32, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20919635

RESUMO

Since its introduction in 1930 by physiologist Walter Bradford Cannon, the concept of homeostasis remains the cardinal tenet of biologic regulation. Cells have evolved a highly integrated network of control mechanisms, including positive and negative feedback loops, to safeguard homeostasis in face of a wide range of stimuli. Such control mechanisms ultimately orchestrate cell death, division and repair in a manner concordant with cellular energy and ionic balance to achieve proper biologic fitness. The interdependence of these homeostatic pathways is also evidenced by shared control points that decode intra- and extracellular cues into defined effector responses. As critical control points of the intrinsic apoptotic pathway, the BCL-2 family of cell death regulators plays an important role in cellular homeostasis. The different anti- and pro-apoptotic members of this family form a highly selective network of functional interactions that ultimately governs the permeabilization of the mitochondrial outer membrane and subsequent release of apoptogenic factors such as cytochrome c. The advent of loss- and gain-of-function genetic models for the various BCL-2 family proteins has not only provided important insights into apoptosis mechanisms but also uncovered unanticipated roles for these proteins in other physiologic pathways beyond apoptosis (Fig. 1). Here, we turn our attention to these alternative cellular functions for BCL-2 proteins. We begin with a brief introduction of the cast of characters originally known for their capacity to regulate apoptosis and continue to highlight recent advances that have shaped and reshaped our views on their physiologic relevance in integration of apoptosis with other homeostatic pathways.


Assuntos
Apoptose/fisiologia , Homeostase/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Autofagia/fisiologia , Cálcio/metabolismo , Ciclo Celular/fisiologia , Diferenciação Celular , Dano ao DNA , Replicação do DNA , Metabolismo Energético , Glucose/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Proto-Oncogênicas c-bcl-2/genética , Transdução de Sinais/fisiologia , Canais de Ânion Dependentes de Voltagem/metabolismo
20.
Biochem Biophys Res Commun ; 401(3): 440-6, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20869947

RESUMO

Fas-activated serine/threonine phosphoprotein (FAST) is the founding member of the FAST kinase domain-containing protein (FASTKD) family that includes FASTKD1-5. FAST is a sensor of mitochondrial stress that modulates protein translation to promote the survival of cells exposed to adverse conditions. Mutations in FASTKD2 have been linked to a mitochondrial encephalomyopathy that is associated with reduced cytochrome c oxidase activity, an essential component of the mitochondrial electron transport chain. We have confirmed the mitochondrial localization of FASTKD2 and shown that all FASTKD family members are found in mitochondria. Although human and mouse FASTKD1-5 genes are expressed ubiquitously, some of them are most abundantly expressed in mitochondria-enriched tissues. We have found that RNA interference-mediated knockdown of FASTKD3 severely blunts basal and stress-induced mitochondrial oxygen consumption without disrupting the assembly of respiratory chain complexes. Tandem affinity purification reveals that FASTKD3 interacts with components of mitochondrial respiratory and translation machineries. Our results introduce FASTKD3 as an essential component of mitochondrial respiration that may modulate energy balance in cells exposed to adverse conditions by functionally coupling mitochondrial protein synthesis to respiration.


Assuntos
Respiração Celular , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/genética , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...